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Abstract

We develop a model that quantifies constitutive nonlinearities and hysteresis inherent to ferro-
elastic compounds, with emphasis placed on shape memory alloys. We formulate the model in two
steps. First, we use the Landau theory of phase transitions to characterize the effective Gibbs free
energy for both single-crystal and polycrystalline ferroelastics. The resulting nonlinear equations
model equilibrium material behavior in the absence of impurities. Second, we incorporate pinning
losses to account for the energy required to move domain walls across material inclusions. The
full model is analogous to those developed by Jiles and Atherton for ferromagnetic compounds and
Smith and Hom for ferroelectric materials. We illustrate aspects of the model through numerical
simulations and comparisons with experimental stress-strain data.
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1 Introduction

A distinguishing feature of ferroelastic materials is the presence of hysteresis in the stress-strain
relation. In shape memory alloys (SMAs), elastic hysteresis enables the materials to achieve very
high work densities, produce large recoverable deformations, and generate high stresses, which are
ideal for a number of current high performance applications. For example, medical and potential
aeronautic and aerospace applications are being investigated to employ SMAs’ large deformation and
large force capabilities [14, 31]. Additionally, SMAs exhibit a damping capacity much larger than
that of a number of conventional materials. In this case, SMA hysteresis is being utilized to design
earthquake and hurricane-proof civil structures [13, 50, 62, 70].

In general, the material behavior of SMAs and other ferroelastics is nonlinear, hysteretic, and
temperature dependent. To achieve the full potential of actuators using these materials, it is
necessary to develop models that characterize the nonlinearities and hysteresis and to develop control
algorithms based on those models. We propose a model that quantifies nonlinear material behavior
in ferroelastic compounds, with emphasis placed on shape memory alloys. The physics-based model
operates on a simplified domain representation of the material and lends itself to fast inversion for
subsequent control design.

1.1 Ferroelastics and Shape Memory Alloys

A ferroelastic is a material in which there is a mechanical switching between orientation states of
its underlying crystal structure. The switching process, called a ferroelastic phase transition, is a
displacive structural phase transition that gives rise to an observable shape-change in the material.
A measure of the crystal distortion is the spontaneous strain, analogous to the spontaneous mag-
netization and polarization associated with ferromagnetic and ferroelectric transitions, respectively.
Measurements of spontaneous strains during ferroelastic phase transitions show ferroelastic mate-
rial behavior to be generally nonlinear, exhibiting temperature-dependent elastic hysteresis (e.g., see
[51]).

Shape memory alloys are a distinguishable class of ferroelastics that recover from up to 10%
deformations via stress and temperature-induced phase transformations. SMAs undergo martensitic
transformations, which are displacive transformations dominated by shear distortions of the crystal
lattice. Transformations occur between two solid phases, called martensite and austenite, each
distinguished by different crystallographic configurations. The martensitic transformations enable
SMAs to recover or “remember” shape by two different mechanisms. First, the shape memory effect
describes the phenomenon where the original shape of a plastically deformed sample is restored by
heating. Upon heating deformed martensite, it transforms into austenite and correspondingly the
SMA recovers its shape. Second, SMAs exhibit superelasticity at temperatures where austenite is a
stable phase under no loading. In this case, austenite transforms into martensite due to an applied
load. Upon unloading, the material reverts to austenite and correspondingly the SMA returns to its
original geometry. As illustrated in Figure 1, there is hysteresis associated with these stress-induced
phase transitions. Upon loading an austenite SMA, it behaves elastically until a loading transition
point is reached. Loading beyond this point induces a transformation to the martensite phase with
a large spontaneous strain. Upon unloading martensite, the crystal transforms back to austenite
exhibiting zero strain (shape recovery). We refer the reader to [22] for details of the shape memory
mechanisms and other SMA material properties.

At the heart of the first-order martensitic phase transitions in SMAs are displacive phase transi-
tions in the crystal structure. NiTi and many Cu-based SMAs admit a cubic crystal structure (B2)
in the high-temperature austenite phase. Upon transformation, the high-symmetry B2 structure
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Figure 1: Idealized superelastic response of SMAs under uniaxial loading.

breaks down into lower-symmetry monoclinic (B19’) martensite variants. Specifically in NiTi, the
transformation corresponds to a reduction in space group symmetry from Pm3m to P21/m, and a
single cubic austenite crystal transforms into one of 24 martensite variants. The transformation
is nearly volume preserving (∼0.5% change) corresponding to predominantly shear deformations on
the order of 10% across crystal habit planes [25]. Considering deformations along one axis (across a
single habit plane), an SMA crystal admits either the austenite (A) phase or one of two martensite
variants (M±). In this simple case, M± are sheared versions of A, as illustrated in Figure 2.

SMAs can be prepared as a single crystal, but they occur more naturally as polycrystalline
compounds. A single-crystal SMA refers to a homogeneous, isotropic SMA specimen that consists
of unit cells of only one crystallographic orientation. A polycrystalline SMA consists of many single-
crystal domains with different orientations. The behavior of single-crystal SMAs differs from that of
polycrystalline SMAs in several aspects. For instance, single-crystal NiTi recovers from up to 10%
tensile strains, depending on the crystal orientation, while polycrystalline NiTi typically recovers no
more than 8% tensile strains [5]. We model aspects of both single-crystal and polycrystalline SMAs
using a homogenization technique based on a description of moving ferroelastic domain walls.

Figure 2: A single crystal under uniaxial loading admits three stable configurations: austenite (A)
and martensite variants (M±). The arrows indicate shearing and the associated shear strain is
εs = tan θ.
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1.2 Ferroelastic Domains

Ferroelastic domains are regions of ferroelastic crystals distinguished by different strain states of
definite crystallographic orientation [51, 64]. Roytburd, who originally formulated the more general
concept of elastic domains, shows that domains form in ferroelastics to minimize internal elastic en-
ergies [49]. Accordingly, ferroelastic domains in SMAs correspond to stable martensite and austenite
strain states. Ferroelastic domain walls are boundaries or transition regions where strains change
gradually between adjacent domains. In fact, phase transformations in SMAs proceed with the
motion of domain walls as discussed in [17, 52]. When a transformation occurs, domains exhibit
spontaneous strains and their corresponding domain walls translate. In addition to translating,
domain walls can bend about pinning sites, which characterize material impurities, inclusions, or
inhomogeneities that hinder domain wall movement [37, 52].

It is commonly accepted that domain wall motion in ferroelastic materials yield hysteretic macro-
scopic behavior. Mueller, et. al. indicate in [41] that nonlinear effects in ferroelastic crystals are
related to the properties of ferroelastic domain walls pinned on defects, which de-pin above some
stress level. Additionally, Jian and Wayman [32] observe domain wall motion in single-crystal and
polycrystalline LaNbO4 ferroelastics under stress and argue that the nonlinear elastic material be-
havior and the observed shape memory effect are the result of domain wall motion. They also reason
that polycrystalline grain boundaries, like pinning sites, limit wall mobility. Furthermore, Newnham
[43] concludes that stress-induced movement of domain walls is a source of the hysteresis observed in
ferroelastics, and Salje [51] claims that macroscopic spontaneous strains resulting from martensitic
transformations are strongly influenced by a crystal’s domain structure.

Many have established an analogy between ferroelastic domains and their ferromagnetic and fer-
roelectric counterparts [7, 12, 16, 32, 41, 43, 48, 49, 57, 66]. In particular, Prieb, et. al. remark on
the similarities between ferroelastic and ferromagnetic hysteresis data and suggest that the similar-
ities arise from common domain rearrangement mechanisms resulting from exogenous fields. They
propose that ferroelastic hysteresis is caused by the pinning of phase boundaries on lattice defects,
as ferromagnetic hysteresis can be caused by the pinning of ferromagnetic domain walls. Further-
more, like Salje [51], they identify a ferroelastic coercive stress analogous to the coercive fields in
ferromagnetic and ferroelectric hysteresis. However, as discussed in [28], ferroelastic domain walls
are typically an order of magnitude thicker than ferromagnetic domain walls, so as in ferroelectrics,
reversible wall effects in ferroelastics are expected to be more substantial.

Given the experimental results of [32, 48] and the strong comparisons to ferromagnetic and
ferroelectric domain theory, a ferroelastic domain theory may provide a viable means for describing
the nonlinear constituent behavior of SMAs. In the next section, we summarize common approaches
for modeling hysteresis in ferroelastic materials. We also summarize a domain model methodology
for ferromagnetics and ferroelectrics that we consider for ferroelastics.

1.3 Modeling Approaches

Most models of hysteresis in SMAs are constitutive, aiming to predict the measured relationships
among stress, temperature, and strain. We refer the reader to reviews and comparisons of a number
of models in [6, 10, 20, 25, 47] and particularly in [53], where computational considerations are
addressed. Ferroelastic and SMA hysteresis models can be roughly categorized as being microscopic,
mesoscopic, or macroscopic, depending on which material level they base their method of predicting
constitutive behavior.

Microscopic and mesoscopic models such as [2, 3, 11, 71] employ both phenomenological and
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first-principles theories to model atomic and lattice-level behavior of ferroelastics. Understanding
material dynamics at these fundamental levels can support efforts to design compounds with desired
material properties. For example, Castán, et. al. [11] quantify interatomic energies and conduct
lattice model simulations for some ferroelastic alloys. Given atomic composition and thermal treat-
ment information, they are able to compute macroscopic elastic constants and martensite transition
temperatures. Models of this nature are typically used for off-line simulations, and their solution
requires techniques such as Monte Carlo methods that have a high computational cost.

Another class of mesoscopic models, traditionally referred to as micromechanical models, focuses
specifically on developing local grain-level constitutive theories [18, 24, 45]. While operating at a
fundamental level similar to that of the previously mentioned approaches, these models provide a
more direct means of predicting observed constitutive behavior. Deriving macroscopic constitutive
behavior from these theories for design applications necessitates additional procedures, such as the
self-consistent averaging approaches in [24, 45]. Scaling these mesoscopic theories to macroscopic
levels usually is computationally intensive; therefore, for macroscopic predictions, these models are
generally not intended for on-line engineering nor control applications.

Macroscopic models commonly employ phenomenological or energy principles. As opposed to
most microscopic and mesoscopic models, macroscopic models are formulated mainly for implemen-
tation into engineering designs and on-line control. A series of internal-state models rooted in the
uniaxial Tanaka approach [6, 47] use an empirical or thermodynamics-based evolution law for the
martensite volume fraction, which in-turn is used to predict stress or strain using a phenomenological
constitutive relation. Similarly, Papenfuss and Seelecke [44] predict thermomechanical behavior by
modeling the evolution of martensite variant fractions, but by using a statistical thermodynamics
description of thermally activated processes.

Another macroscopic approach, based on phenomenological principles, is the Preisach model
[68]. Originally developed for ferromagnetic hysteresis, Preisach models have been generalized
and adapted to other physical systems, including SMAs [23, 29, 30, 35, 36, 40, 69]. In general,
Preisach models are purely empirical and their implementation reduces to the identification of many
mathematical parameters via numerous hysteresis experiments that may be unavailable in practice.
To make Preisach models more tractable for SMA applications, there have been attempts to replace
or identify purely mathematical constructs with known or approximated physics. For example,
Huo [30] incorporates Falk’s [15] macroscopic Landau-Ginzburg potential to account for first-order
martensitic phase transformations. In addition, Lagoudas and Bhattacharyya [36] associate Preisach
weighting functions with distributions of single-crystal orientations in polycrystalline SMAs.

The model we present focuses on predicting macroscopic constitutive behavior by considering
mesoscopic (domain level) energy relations. We derive our model based on the Jiles-Atherton
domain wall model formulation, first used to predict ferromagnetic hysteresis in [33] and subsequently
ferroelectric hysteresis in [56]. Previous work to employ these techniques for ferroelastics includes
[39, 66]. We take this approach for three main reasons. First, the Jiles-Atherton approach, leads
to models with few parameters, most of which can be readily identified from measurements and all
of which can be updated quickly. Second, the model formulation is of low-order and lends itself
to control design; it has been implemented into control algorithms via inverse compensation [55].
Third, successful adaptation of the Jiles-Atherton framework to ferroelastics could provide a crucial
step towards developing a unified methodology for modeling hysteresis in ferroic materials [57].

While many have investigated domain phenomena in ferroelastics, as described in the previous
section, few have related domain wall theory to macroscopic hysteresis explicitly. In particular,
Brokate and Sprekels [7] develop constitutive equations based on Falk’s free energy formulation
to predict temperature-dependent stress-strain hysteresis, but no comparison to data is provided.
Likewise, Stoilov and Bhattacharyya [61] model SMA hysteresis by describing the evolution of phase
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fronts (domain walls) during transformation. Neither accounts for material defects nor treats minor
loops.

In the following sections, we formulate the model in two steps. In the first, we develop nonlinear
constitutive relations that characterize the stress-strain behavior of defect-free ferroelastic compounds
in thermodynamic equilibrium. We achieve this by first considering the elastic energy for a single
crystal and then by averaging over grains to obtain an effective energy for a polycrystal. The
resulting nonlinear constitutive equations predict hysteresis in which phase transformations occur
instantaneously and phase boundaries propagate unhindered. In the second step, we incorporate the
effects of material inclusions and formulate the energy dissipated by the motion of phase boundaries
across those inclusions. The resulting domain wall model predicts stress-strain hysteresis under
quasi-static, isothermal conditions. Finally, we demonstrate the temperature dependent hysteresis
predicted by the model via numerical simulations, we discuss model parameter identification from
measurements, and we validate our model with superelastic SMA hysteresis data.

2 Nonlinear Stress-strain Law

In this section, we derive a stress-strain law to model the superelastic response of SMAs in thermody-
namic equilibrium. Shape memory mechanisms in SMAs are caused by first-order martensitic phase
transformations. Accordingly, by describing these structural phase transformations, we yield an ex-
pression for the stress-strain material response. Our approach follows from energy methods used in
the nonlinear theory of finite thermoelasticity, where the construction of a multi-well strain-energy
function is used to characterize constitutive behavior [1]. Free energy expressions for SMAs have
been developed through various approaches [1, 4]. We take a phenomenological approach based on
the Landau theory of phase transitions, which has been shown to yield appropriate approximations
for the free energies corresponding to ferroelastic phase transitions [51] and has been used for SMA
modeling in [7, 16, 19, 39, 51, 61, 66]. In addition to ferroelastics, the Landau theory has been
successful in modeling transitions in ferroelectrics and ferromagnetics [15].

First, we summarize the Landau theory currently established for SMAs, and we quantify the free
energy of a single crystal as a function of strain. Second, we adapt the single-crystal energy function
to accommodate bulk polycrystalline specimens under tensile loading. Third, we obtain a stress-
strain law from the effective free energy equations of state. Our ultimate result is a thermodynamic
equilibrium relation predicting relative macroscopic elongation due to an applied stress at a fixed
temperature.

2.1 The Landau Free Energy

The Landau theory is a phenomenological theory that establishes the consistency of microscopic
crystal characteristics, such as space-symmetry, with macroscopic quantities, such as elasticity. Using
lattice dynamics, elasticity theory, and group theory, it aims to derive a system free energy based
on the symmetry changes of a crystallographic phase transformation. In constructing the free
energy expression, the Landau theory defines two fundamental concepts: the order parameter and
the Landau free energy.

The order parameter is a thermodynamic quantity of the system that distinguishes one phase from
another. Identifying the order parameter for a particular phase transformation is nontrivial. In some
cases, such as purely strain-induced ferroelastic transitions, the spontaneous strain characterizes the
order parameter [64]. However, in general this is not the case, and the order parameter can be related
to the softening of phonon modes or to an orientational ordering process, for example [2, 3, 46, 51, 65].
In the case of martensitic transformations exhibited by SMAs and similar ferroelastics, there has been
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controversy over the specification of the order parameter. Traditionally, spontaneous strain, which
distinguishes austenite domains from martensite domains, is treated as the order parameter [15, 16,
19, 66]. However, recent studies have shown that martensitic phase transitions are improper, treating
macroscopic transformation strain as a secondary effect coupled to the primary order parameter.
The primary order parameter, which solely determines the symmetry-breaking mechanism, instead
is expressed in terms of normal mode components of lattice modulation wave vectors [2, 3, 46]. In
its group theoretical formulation, the Landau theory restricts the order parameter to a quantity that
spans the irreducible representation driving the symmetry-breaking transition.

The Landau free energy is a thermodynamic expression determined by symmetry properties of
the crystallographic phase transformation. It is in the form of a polynomial expansion whose terms
are invariant functions under the symmetry operations of the high-symmetry space group. For
general ferroelastics, the Landau free energy is a function of the order parameter and spontaneous
strain

L (Qi, εi) = LQ (Qi) + Lε (εi) + LQε (Qi, εi) , (1)

where LQ is the expansion of the order parameter components Qi, Lε is the elastic energy expressed
in terms of spontaneous strain components εi (Voigt notation), and LQε is the order parameter-
strain coupling energy. The analytical form of the expansions is dictated by the symmetry of the
high-symmetry phase and the symmetry breaking that leads to the low-symmetry phase. The cubic-
monoclinic transformation in NiTi corresponds to the symmetry breaking from group Oh to group
C2h. Group theoretic methods for constructing the Landau free energy in terms of multi-component
OPs for all seven crystal systems are provided in [65], while analyses of the cubic-monoclinic trans-
formations in NiTi and similar compounds are detailed in [3, 19, 63, 64]. For example, truncated to
sixth-order, the order parameter expansion invariant with respect to the cubic symmetry group Oh

is

LQ (Qi) =
β0

2
I1 +

β1

4
I2 +

β2

4
I2
1 +

β3

6
I3
1 +

β4

6
I1I2 +

β5

6
I2
3 , (2)

where
I1 =

(

Q2
1 +Q2

2 +Q2
3

)

, I2 =
(

Q4
1 +Q4

2 +Q4
3

)

, I3 = Q1Q2Q3, (3)

for a three-component order parameter. In general, the energy coefficients βi are temperature-
dependent. The standard assumption in the Landau theory is that only the coefficient of the
quadratic term depends on temperature and that it is proportional to (T − T0), where T is the
system temperature and T0 is the critical temperature of the phase transition, analogous to the
Curie temperature for ferroelectrics and ferromagnetics. This assumption, motivated by specific
entropy and enthalpy considerations in [51], guarantees that the high-symmetry phase corresponds
to a stable, stress-free high-temperature phase for T > T0. Evidence for temperature-dependence in
other coefficients is reported in [19, 67] for specific ferroic compounds. In (2), the Landau free energy
accounts for transformations to and among four distinct low-symmetry phases. (An expansion to
twelfth-order accounts for a maximum of eight phases.) By considering only those transformations
and phases pertinent to the first-order B2-B19’ transformation in NiTi, the form of (2) simplifies to

LQ (Q) =
b2(T − T0)

2
Q2 +

b4
4
Q4 +

b6
6
Q6, (4)

where Q is a scalar order parameter, and the effective coefficients b2, b4, b6, and temperature T0

are combinations of coefficients for multi-component expansions. Simplification and reduction of
general expansions is discussed in [51, 65]. We note that with b2, b6 > 0 and b4 < 0, (4) is the
minimum-order order parameter expansion that describes the first-order phase transition under the
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symmetry constraints. In the Landau theory, typically one uses the expansion of lowest-order to
model a phase transition with as simple a model as possible.

The elastic and coupling energies are left to be defined. Using standard Voigt notation, we take
the symmetry-obeying elastic energy expansion

Lε (εi) =
1

2

6
∑

i,j=1

(cijεiεj) +
1

2

6
∑

i,j=1

(cijklεiεjεkεl) , (5)

where cij and cijkl are second-order and fourth-order elastic coefficients, respectively. A thermody-
namic description of high-order elastic coefficients is provided in [8], and [59, 60] describe methods
for measuring those of single crystals. Symmetry of the Landau free energy restricts terms of the
order parameter-strain coupling energy to linear combinations of Qn

i ε
m
i , with integers m > n > 0.

Conserving the symmetry of the improper phase transition we take a biquadratic coupling

LQε (Q, εi) =
1

2
Q2

6
∑

i,j=1

dijεiεj (6)

with a scalar order parameter and the constant coupling coefficients dij . Refer to [51] for details on
other coupling scenarios and measurements of the coupling coefficients.

The Pm3m to P21/m symmetry breaking in NiTi restricts the spontaneous strain tensor compo-
nents to four nonzero shear strains [51]. For a one-dimensional model, we consider a single nonzero
shear component εs, which yields

Lε (εs) =
css
2
ε2s +

cssss
4

ε4s

and

LQε (Q, εs) =
dss
2
Q2ε2s.

Therefore the reduced Landau free energy in one spatial dimension is

L (Q, εs) =
b2(T − T0)

2
Q2 +

b4
4
Q4 +

b6
6
Q6 +

css
2
ε2s +

cssss
4

ε4s +
dss
2
Q2ε2s. (7)

Similar to techniques employed in [46, 51, 65, 66], we obtain a free-energy function solely in terms
of strain by enforcing the stress-free equilibrium conditions

∂L

∂Q
= 0 and

∂L

∂εs
= 0,

which yields the relations

Q
(

b2(T − T0) + b4Q
2 + b6Q

4 + dssε
2
s

)

= 0 (8)

εs
(

css + cssssε
2
s + dssQ

2
)

= 0. (9)

By construction, vanishing Q corresponds to the high-temperature/symmetry phase, which we asso-
ciate with zero deformation (austenite). Therefore, taking εs 6= 0 in (9) yields

Q2 = −
css + cssssε

2
s

dss
.
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Then (8) implies

[

b2 (T − T0)−
b4css
dss

+
b6c

2
ss

d2
ss

]

+

(

dss −
b4cssss
dss

+ 2
b6csscssss

d2
ss

)

ε2s +
b6c

2
ssss

d2
ss

ε4s = 0. (10)

Scaled by a factor of εs, we take (10) as the equilibrium condition for an effective free energy in
terms of shear strain

Le (εs) =
as6
6
ε6s −

as4
4
ε4s +

as2
2

(T − Tc) ε
2
s, (11)

with effective parameters

Tc = T0 +
css (b4dss − b6css)

b2d2
ss

, as2 = b2, a
s
4 =

cssss (b4dss − 2b6css)

d2
ss

− dss, and as6 =
b6c

2
ssss

d2
ss

.

By expressing the Landau free energy in terms of effective quantities, we have avoided assigning
a physical definition to the order parameter at the risk of losing the ability to experimentally verify
the expansion coefficients. Nevertheless, we can use experimental nonlinear elastic and coupling
constants to validate orders of magnitude of least-squares fits to data. Provided Tc, a

s
2, a

s
4, a

s
6 > 0,

(11) maintains the overall equilibrium behavior established by symmetry in (4). Including higher-
order nonlinear elastic terms in (5) results in an effective Landau free energy of higher-order. While
a similar effect may be realized by increasing the order of the order parameter expansion, only the
lowest-order expansion in (4) is necessary to guarantee a first-order transition to the monoclinic
phase. As for the coupling energy, there lacks evidence that terms Qnεmi for m+ n > 4 contribute
significant amounts of energy in ferroelastics [51]. Based on these arguments, we use an extension
to (11)

Lme (εs) =
m
∑

j=3

(

as2j
2j

)

ε2js −
as4
4
ε4s +

as2
2

(T − Tc) ε
2
s (12)

for m ≥ 3 odd, which we take to reflect higher-order elastic nonlinearities in the material. For
constants as2j , we only restrict a priori as2, a

s
4, a

s
2m > 0 to ensure the observed first-order transition

at Tc > 0 and stability for large εs. In general, we determine the effective coefficients for a specific
SMA or transducer through a least-squares fit to data. Note that (12) corresponds to the expansion
of a scalar order parameter, invariant with respect to triclinic crystal symmetry with point group 1̄
[65].

In [16, 19], (11) is used to characterize uniaxial phase transformations in SMAs where Tc marks
the temperature below which austenite is unstable. The free energy function has up to three
minima; the energy minimum at εs = 0 corresponds to the high-temperature austenite phase, while
the symmetric lateral minima correspond to the martensite variants as illustrated in Figure 3. The
free-energy in (12) is a reference free energy with respect to the free energy of stress-free austenite,
since it neglects other energy contributions. Those contributions, such as chemical free energy,
depend solely on temperature, and thus are inconsequential to isothermal stress-strain behavior [51].

2.2 Effective Gibbs Free Energy

The Landau theory provides us with a free energy expression in terms of shear strain of a single
crystal. The expression (12) is the reference Helmholtz free energy density at a fixed temperature
T . Including the effects of an external field, we get the associated Gibbs free energy density

Gs (εs;σs) =
m
∑

j=3

(

as2j
2j

)

ε2js −
as4
4
ε4s +

as2
2

(T − Tc) ε
2
s − σsεs, (13)
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Figure 3: A Landau free energy (11) describing a crystallographic system with three equilibrium
phases.

where σs is the shear stress conjugate to εs. We reformulate (13) in terms of tensile strains related
to measured elongation and of tensile stresses (forces) applied to an SMA. The shear stress and
strain of a uniaxially loaded element are related to tensile (normal) quantities as follows:

σs = σ sinφ cosφ (14)

ε = εs sinφ cosφ, (15)

where the element is oriented at an angle π/2 − φ with respect to the normal stress σ, and the
measured engineering strain of the specimen is ε. Therefore, (13) has the form

Gφ (ε;σ) =
m
∑

j=3

(

aφ2j
2j

)

ε2j −
aφ4
4
ε4 +

aφ2
2

(T − Tc) ε
2 − σε, (16)

where

aφ2j =

(

2

sin(2φ)

)2j

as2j , φ ∈
(

0,
π

2

)

. (17)

In a stressed polycrystalline compound, each single-crystal region exhibits a different amount
of crystallographic shear. In this case, there are many grains with different orientations φ. We
get an effective, macroscopic free energy for a polycrystal, by integrating over single-crystal grain
orientations [16].

G (ε;σ) =

∫ π/2

0

Gφ (ε;σ) f(φ)dφ

=

m
∑

j=3

a2j

2j
ε2j −

a4

4
ε4 +

a2

2
(T − Tc) ε

2 − σε, (18)
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where

a2j =

∫ π/2

0

aφ2jf(φ)dφ. (19)

Here, f(φ) represents a scaled statistical distribution of single-crystal orientations. The formulation
of effective coefficients a2j in (19) is well defined, despite the singularities in the integrands at φ = 0
and π/2. At these orientations, the applied stress has no shear component. Since we assume that
the proportion of grains that do not shear is negligible, we choose a distribution function f(φ) that
removes the singularities. Ultimately, the macroscopic free energy (18) differs from (13) only in the
scaling of its terms.

2.3 Stress-Strain Equations

We derive a stress-strain law from (18) by employing equilibrium principles. The equilibrium state
of the material is the strain value that yields a minimum Gibbs free energy given a stress σ at fixed
temperature T . The stable equilibrium states (εan, σ, T ) must satisfy the conditions

∂G

∂ε

∣

∣

∣

∣

εan,σ,T

= 0 and
∂2G

∂ε2

∣

∣

∣

∣

εan,σ,T

> 0. (20)

Evaluating the conditions yields

m
∑

j=3

a2jε
2j−1
an − a4ε

3
an + a2 (T − Tc) εan = σ (21)

subject to
m
∑

j=3

(2j − 1) a2jε
2j−2
an − 3a4ε

2
an + a2 (T − Tc) > 0, (22)

where εan is the strain at equilibrium.
The stress-strain relationship (21) is nonlinear and multivalued, and its solution is path-dependent.

For a sixth-order expansion, there are at most three solutions for a given stress; each strain cor-
responds to one of the three crystal phases. As shown in Figure 4, the stress-strain response is
temperature-dependent and hysteretic. Note that the model predicts instantaneous phase transi-
tions, corresponding to the discontinuities in the hysteresis loops. This behavior is a characteristic
of the Landau theory of phase transitions, since it is assumed that a crystal can reach its equilibrium
configurations instantaneously. Issues concerning the description of superelastic hysteresis via a
Landau potential are discussed in [42]. In particular, the equilibrium behavior predicted in (21)
describes the maximum hysteresis exhibited by a material. That is, the phase transformations are
thermodynamically likely to occur at any point in the metastable regions of the stress-strain curves
[16, 42]. Therefore, as is, the model predicts a stabilized hysteresis loop where a full transformation
to martensite has occurred upon loading. In the next section, we incorporate phase boundary effects
which prohibit discontinuous transitions (21).
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Figure 4: The equilibrium stress-strain model for increasing temperatures - from the quasiplastic
regime T < Tc (a) to the pseudoelastic (superelastic) regime (d). There are up to three equilibrium
branches, corresponding to austenite and the martensite variants.

3 The Domain Wall Model

The Landau-based constitutive theory of lattice-level behavior suggests that a material responds dis-
continuously when brought across a transformation point. The thermodynamic equilibrium relation
(21) derived from the Landau free energy also predicts discontinuous behavior at the macroscopic
level, however, which is not an observed phenomenon [22, 54, 66]. Solutions to this dilemma have
been to use a Landau-Ginzburg free energy to augment the Landau potential with strain-gradient
terms. The result of this approach is an expression for the geometry and motion of phase boundaries
as transverse shock waves in the absence of material dislocations [17, 61]. Realistically, ferroelastics
contain material inclusions and other inhomogeneities that are manifest as an internal friction that
inhibits phase boundary motion and that dissipates elastic energy. To account for impurities and
energy losses, we treat the macroscopic measured strain ε as a result of crystal domain reorientations
impeded by lattice defects. We call the strain that would be measured in the absence of mate-
rial inhomogeneities the anhysteretic strain, εan. By definition, the anhysteretic quantity in the
Jiles-Atherton framework represents the system response that would be obtained in the absence of
hysteresis effects. In [33, 56, 58], each point on an anhysteretic curve corresponds to a global en-
ergy minimum for a given external field. Accordingly, this interpretation restricts the single-valued
anhysteretic strain to lie on only the absolutely stable portions of the equilibrium strain curves il-
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lustrated in Figure 4. The absolutely stable states represent the Maxwell states of an elastic body
[1, 16, 42]. As in [66], we interpret the anhysteretic strain in ferroelastics to be identical to the
multivalued equilibrium strain in (21), which reflects both absolutely stable and metastable energy
states.

In addition to εan, we identify two macroscopic strains that are brought about by domain wall
motion. We denote the irreversible strain εir as that which manifests from domain wall translation
across pinning sites. We denote the reversible strain εre as that which manifests from domain wall
bending about pinning sites. The total macroscopic strain ε is the sum of the two. In this section,
we quantify irreversible and reversible strains in terms of εan to predict measured bulk strain.

3.1 Domain Wall Pinning

Pinning sites are typically due to material impurities, inclusions, or inhomogeneities that effectively
hinder the natural motion of domain boundaries. In magnetic materials, Jiles and Atherton assume
that pinning sites are uniformly distributed, localized entities with equal energy proportional to an
average domain wall energy [33, 56, 58]. We make these assumptions in our analysis; however we
distinguish three classes of domain walls for any single orientation corresponding to the boundaries
among A, M+, and M− phases. Falk treats the motion of this class of domain walls in [17].
Under an increasing stress, phase transformations occur at the transformation stress σβ (T ), where
β ∈ {∓,−A,A+} denotes the switch from M− to M+, M− to A, and A to M+, respectively.
The strain εtrβ (T ) is the spontaneous transformation strain accompanying the domain switching,
illustrated by the jumps in Figure 4, which is essentially the strain manifested by wall translation.
For an applied stress σ ≥ σβ (T ) at temperature T ,

Eβ (T ) =

∫

σ (ε) dε = σβ (T ) ε
tr
β (T )

is the energy generated per unit volume in translating a single β-domain wall. Therefore, the total
energy per unit volume is

E (T ) =
∑

β

Eβ (T ) . (23)

We reformulate (23) as

E (T ) = σ̄ (T )
∑

β

εtrβ (T ) (24)

where

σ̄ (T ) =

∑

β σβ (T ) ε
tr
β (T )

∑

β ε
tr
β (T )

. (25)

Following Jiles and Atherton, we assume that the energy required to move a domain wall across a
pinning site is proportional to the energy of unimpeded domain wall movement. Letting nβ denote
the number density of pinning sites at a β-domain wall, we approximate the pinning energy density
by

Epin (T ) = Cσ̄ (T )
∑

β

nβε
tr
β (T ) , (26)

where C is a proportionality factor. One can establish a constant C in terms of quantities at a fixed
temperature. For T = Tc, (26) simplifies to

Epin (Tc) = Cσ∓ (Tc)n∓ε
tr
∓ (Tc) . (27)
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It follows that,

C =
Epin (Tc)

σ∓ (Tc)n∓εtr∓ (Tc)
, (28)

so that (26) becomes

Epin (T ) =
Epin (Tc) σ̄ (T )

σ∓ (Tc)n∓εtr∓ (Tc)

∑

β

nβε
tr
β (T ) . (29)

We assume the σ̄ (T ) varies little over practical temperature ranges, hence we approximate Cσ̄ (T )
by a constant k. We also recognize that the total change in strain accompanying pinned wall
translation in an elemental volume is

dεir =
∑

β

nβε
tr
β (T ) .

Finally, we take as the total averaged pinning energy density

Epin (εir) = k

∫

V
dεir, (30)

where integration is over macroscopic volume V . To account for the shearing of a distribution of
grain orientations, we employ techniques used in Section 2.2, which results in a re-scaled value of k.
Accordingly, we treat the pinning parameter as an effective macroscopic quantity, which we must fit
to experimental data.

3.2 Effective Stress

Material inhomogeneities, lattice defects, and polycrystalline structure give rise to local stress varia-
tions which yield self-stressed domains and variations in local critical temperatures [16]. To account
for these variations in the bulk material, we use an interaction field relation described in [21, 27] for
structural phase transitions. The total loading of a crystal element is the effective stress σe, which
incorporates both the applied stress and an internal stress field coupled to the overall deformation

σe = σ − αε. (31)

The mean-field constant α represents the average variation in the stress field. The nonlinear stress-
strain law incorporating σe is

m
∑

j=3

a2jε
2j−1
an − a4ε

3
an + a2 (T − Tc) εan = σe, (32)

subject to (22). For the case ε ≈ εan, the direct effect of α in (32) is that the phase transition at Tc,
which would occur without mean-field effects, occurs at an effective temperature T e

c = Tc−α/a2. In
general, the effective energy coefficients, α and Tc are macroscopic quantities that represent statistical
averages of microscopic phenomena. In Section 4.1, we discuss their identification. We note that (31)
is analogous to the mean-field relations used in [33, 56] for magnetic and ferroelectric compounds and
the one introduced in [66] for LiCsSO4 crystals. Along with pinning, effective stresses significantly
affect the motion of phase boundaries, which we treat next.
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3.3 Irreversible Strain

Motivated by the Jiles-Atherton framework, we characterize the strain comprised of domain wall
translations by establishing an energy balance in terms of εir. The elastic work performed by an
effective stress on the material is

E =

∫

σe (ε) dε. (33)

In our formulation of the model where strains are the response to applied stresses, it will be more
convenient quantify work in terms of the complementary energy

∫ σe

0

ε (σ̃e) dσ̃e = σeε−

∫ ε

0

σe (ε̃) dε̃, (34)

for all σe (ε) and ε (σe) that are monotone increasing. It follows that the energy expended in moving
domain walls across defects is the corresponding equilibrium elastic energy reduced by the energy
dissipated due to pinning

∫

V
εir (σe) dσe =

∫

V
εan (σe) dσe − k

∫

V

(

dεir
dσe

)

dσe. (35)

In (35), the last term is derived from (30) and the effective stress is defined in (31). The associated
equation of state with respect to the effective stress is

εir = εan − δk
dεir
dσe

, (36)

where δ is a directional parameter that ensures that pinning opposes changes in the effective stress

δ =

{

+1 increasing σe
−1 decreasing σe.

Then (36) reduces to

εan − εir = δk
dεir
dσ

(

1

1− α dε
dσ

)

(37)

in terms of the applied stress σ. Therefore, there is a coupling between the dynamics of the
irreversible and total strains

dεir
dσ

=
εan − εir

δk

(

1− α
dε

dσ

)

. (38)

Once we derive an expression for the reversible strain in the next section, we shall use (38) to
obtain an ODE solely in terms of the total and equilibrium strains. Alternatively, effective fields in
[33, 56] employ a coupling with the irreversible quantity, which implies σe = σ − αεir in (36). This
is a viable approximation if changes of the reversible strains in the material are relatively small so
that

dε

dσ
≈
dεir
dσ

.

In this case (37) yields a decoupled nonlinear ODE for εir

dεir
dσ

=
εan (σe)− εir (σ)

δk + α [εan (σe)− εir (σ)]
. (39)

This form of the model is directly analogous to the irreversible magnetization and polarization
models in [33, 56]. In effect, (39) quantifies the motion of phase boundaries across inclusions, relative
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to their ideal motion in the absence of inclusions. To describe domain wall motion in ferroelastics,
which is manifested by structural interactions dominated by reversible elastic effects, we consider the
form in (38). The quantification of reversible strains completes our characterization of the measured
strain.

3.4 Reversible Strain

We define reversible strain εre to be the macroscopic strain brought about by domain wall bending
in the presence of pinning mechanisms. Particularly, we take domain wall bending in ferroelastics
to be domain wall movement that is not associated with structural phase transitions responsible for
wall translation. Then, for ferroelastics we assume that the energy involved in reversible domain
motion is a fraction of the difference in the ideal and irreversible energies

∫

V
εre (σe) dσe = cre

(
∫

V
εan (σe) dσe −

∫

V
εir (σe) dσe

)

, (40)

where cre ∈ [0, 1] represents the unitless reversibility coefficient. Therefore, the reversible strain can
be formulated as

εre = cre (εan − εir) . (41)

In the analogous models for ferromagnetics and ferroelectrics, where domain wall bending is
characterized by planar walls bulging spherically about pinning sites, [33, 34, 38, 56] similarly argue
that reversible quantities reduce the difference of the irreversible and anhysteretic phenomena. We
treat cre as a measure of the flexibility of ferroelastic domain walls as in [33], and estimate cre for
a particular ferroelastic compound through data fits. For the ferromagnetic and ferroelectric cases,
it is related to the domain wall surface energy, the domain magnetization or polarization, and the
average spacing between localized pinning sites.

3.5 Total Strain

The combination of the irreversible and reversible strain yields the total measured strain

ε = εir + εre

= (1− cre) εir + creεan. (42)

As described in [49], ferroelastic domains and domain walls move to minimize the elastic energy
in the crystal. For a given applied stress, the anhysteretic strain represents a minimum energy
configuration as discussed in the previous section and analogously in [34, 38]. Therefore, if a de-
pinned domain wall achieves its equilibrium configuration, we expect translation to virtually cease,
and so the observed bulk strain ε will be dominated by εre. Based on this idea and similar analysis
in [38, 56], we derive the following relation from (42).

dε

dσ
= (1− cre) δ̃

dεir
dσ

+ cre
dεan
dσ

,

where δ̃ = 1 for all points (σ, ε) that lie outside the anhysteretic region bounded by the equilibrium
curves and δ̃ = 0 otherwise. From (32) we have

dεan
dσ

=

(

1− α
dε

dσ

)

P (εan)
−1 (43)
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where

P (εan) =
m
∑

j=3

(2j − 1) a2jε
2j−2
an − 3a4ε

2
an + a2 (T − Tc) (44)

is equivalent to the left-hand side of (22), so P (εan) > 0. Using (43) and the expression for εir in
(38) yields

dε

dσ
= (1− cre) δ̃

εan − εir
δk

(

1− α
dε

dσ

)

+ cre

(

1− α
dε

dσ

)

P (εan)
−1

=

(

δ̃
εan − ε

δk
+

cre
P (εan)

)(

1− α
dε

dσ

)

since (1− cre) (εan − εir) = εan − ε. Therefore,

dε

dσ
=

δ̃ (εan − ε) + δkcreP (εan)
−1

δk + α
[

δ̃ (εan − ε) + δkcreP (εan)
−1
] , (45)

where εan (σe) solves (32). Suitable initial conditions depend on the temperature T and initial stress;
we take ε(0) = 0 for nominal superelastic applications. We note that the case where δ̃ = 0 simplifies
to

dε

dσ
=

cre
creα+ P (εan)

,

which represents the reversible strain dynamics solely in terms of anhysteretic contributions. The
first-order nonlinear differential equation (45) is the full domain model for ferroelastics. Table 1
summarizes the model parameters and their physical origin. In the next section, we illustrate
solutions to the model and compare results to experimental superelastic data.

Parameter Physical Description

Tc Temperature below which a single domain of austenite is unstable.

k Pinning constant; quantifies the energy dissipation due to material inclusions.

cre Reversibility coefficient; determines the contribution of reversible effects.

α Mean-field constant; characterizes internal stresses manifested by
material inhomogeneities.

a2j , j = 1 · · ·m Effective Gibbs free energy coefficients.

δ Pinning switch that ensures that the friction-like pinning opposes loads.

δ̃ Irreversibility switch that turns off irreversible effects when the equilibrium
is reached.

Table 1: Description of model parameters.
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4 Numerical Simulations and Validation

To numerically integrate the model, we employ a modified implicit Euler routine. In addition, we
apply numerical scaling in solving the equilibrium equation (32) and in evaluating (44) to account
for the typically large values of the nonlinear elastic constants and small strain values. Figure 5
illustrates model simulations at different fixed temperatures using three energy coefficients. As
in Figure 4, we plot strain versus stress, treating deformation as the result of prescribed loads.
The parameters values used are Tc = 273K, k = 10MJ /m3, cre = 0.50, α = 7 × 103 MPa, a2 =
1.275× 103 MPa /K, a4 = 1.963× 107 MPa, and a6 = 3.665× 109 MPa.

The effective Gibbs free energy coefficients a2j determine the shape of the non-transition regions,
the temperature-dependent transformation points, and the size of the superelastic temperature in-
terval. The transition temperature Tc > 0 shifts the temperature range where superelasticity occurs.
The mean-field constant α ≥ 0 controls the slope of the transition regions, where small values yield
abrupt transitions. The pinning parameter k > 0 controls the curvature of the transition regions,
where large values round the end of transition lines and can prevent loop closure. Finally, the re-
versibility coefficient cre ∈ [0, 1] controls the curvature of the reversal paths with values close to zero
yielding flat curves. In the following sections, we identify physical values for the model parameters
and compare model simulations to experimental hysteresis data.
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Figure 5: The domain model for temperatures (a) T = 272K, (b) T = 283K, (c) T = 291K, and (d)
T = 298K. The gray segments and arrows correspond to the equilibrium strains calculated from
(32).
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4.1 Parameter Identification

Table 2 summarizes properties of the data used to characterize the domain model. The transforma-
tion temperatures are typically obtained from differential scanning calorimetry (DSC) or temperature-
controlled resistivity measurements. We measure the slope S (in stress units) and width εT (i.e.,
transformation strain) using a single bounding hysteresis loop at fixed temperature T . For an initial
iterate in a least-squares fitting routine, we calculate parameter estimates as follows. The bulk
transition temperature T e

c , which incorporates mean-field effects, is the average of Ms and Mf . A
fit of the equilibrium stress-strain law (32) to the non-transition portions of the hysteresis loop yields
the value p2 ≡ a2(T − Tc) + α and the higher-order energy coefficients a4, · · · , a2m. It follows that

â2 =
p2

T − T ec
. (46)

is an estimate for a2. The effective stress and pinning parameter estimates α̂ and k̂ satisfy

α̂+
2

εT
k̂ = S. (47)

Finally, we calculate the estimate T̂c using the relation

T̂c = T ec +
α̂

p2
(T − T ec ) . (48)

Since the pinning constant is defined in terms of material properties that are not feasibly obtained,
we determine a value of k̂ according to initial simulations, and hence resolve (47) and (48). We refer
the reader to [34] and [58] for parameter identification methods for the analogous ferromagnetic and
ferroelectric models.

4.2 Model Validation

We compare our model with data from single-crystal and polycrystalline NiTi stress-strain experi-
ments. In each case, we performed a fit to refine the parameter values obtained from properties of
the data.

The single-crystal data from [26] corresponds to tensile experiments on NiTi of 50.8at.% Ti
composition with a [211] orientation. To minimize the effects of material aging, a stabilized hysteresis
loop was obtained after 16 cycles at 295K. The measured transformation temperatures Ms = 231K
and Mf = 214K , and, with S = 4457MPa and εT = 0.02, we take k̂ = 20MJ /m3 to obtain initial
estimates of the remaining model parameters. Figure 6a illustrates the results for m = 3, 5. The
parameter values resulting from the least-squares fitting routine for the m = 5 case are summarized
in Table 3 and corresponding model predictions are compared with single crystal data in Figure 7a.

Measured Quantity Description

Ms, Mf Martensite start/finish temperatures.

S Slope of transition regions.

εT Strain-width of the transition region.

Table 2: Measured quantities used to estimate the model parameters.
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Figure 6: (a) Data from [26] for single-crystal NiTi, and (b) polycrystalline NiTi data from [9].
Each were measured at room temperature (295K). Model simulations for three and five energy
coefficients use initial parameter estimates obtained from the measured quantities in Table 2.

The polycrystalline data from [9] corresponds to tensile experiments on a polycrystalline NiTi
wire of 55.0at.% Ti composition. The stabilized hysteresis loop was measured after a mechanical
aging treatment of 22 cycles at 295K. Subsequent minor loops were achieved by partial loading
and complete unloading cycles. DSC measurements indicate the transformation temperatures Ms =
302K and Mf = 273K. From the bounding loop, we measured S = 1845MPa and εT = 0.035, and

from initial simulations we take k̂ = 20MJ /m3. Figure 6b shows the simulations of the bounding
loop using the initial parameter estimates. After fitting the m = 5 case, we simulated the hysteresis
with cylces in Figure 7b. The associated parameter values are summarized in Table 3.

Data Set Single-crystal Polycrystal

Tc (K) 225 288

k (MJ /m3) 13.31 20.39

cre 0.95 0.90

α (MPa) 2457 698.8

a2 (MPa /K) 9.358× 102 8.430× 103

a4 3.195× 108 1.059× 108

a6 7.395× 1011 8.775× 1010

a8 −7.665× 1014 −3.224× 1013

a10 2.987× 1017 4.465× 1015

Table 3: Parameter values used for model predictions in Figure 7. Coefficients a4, a6, a8, and a10

have units of MPa .
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Figure 7: Hysteresis of (a) single-crystal NiTi data from [26], and (b) polycrystalline NiTi data from
[9] measured at room temperature (295K). Model predictions (m = 5) with parameters refined
through least squares fit.

5 Concluding Remarks

In this paper, we have developed a model for temperature-dependent hysteresis in ferroelastics, with
an emphasis on SMAs. The model predicts observed isothermal responses by modeling the evolution
of ferroelastic domains under applied stresses. First, we use the Landau theory of phase transitions
at the crystallographic level to derive effective equilibrium stress-strain equations at the macroscopic
level. Then, considering the bending and translation of domain walls pinned at material inclusions,
we account for energy losses associated with the propagation of phase boundaries. The resulting
rate-independent model is analogous to the domain wall models developed in [33] for ferromagnetics,
in [56] for ferroelectrics, and introduced in [66] for ferroelastic LiCsSO4.

Altogether, our model requires m + 4 (m ≥ 3 odd) material-dependent, effective parameters
that we identify through measurements and least-squares fits to data. We show that with five
effective energy coefficients (m = 5), the model provides excellent agreement with single-crystal
and polycrystalline data experimental data. Moreover, our model is based on a single first order,
nonlinear ordinary differential equation, which we solve numerically employing a simple modified
implicit-Euler scheme. The simplicity of our model facilitates real-time parameter updating should
it be required due to changing operating conditions. In addition, the low-order formulation makes
it viable for incorporation into engineering design applications and for real-time implementation in
model-based controllers. In particular, inverse compensator control methods have been used with
ferromagnetic domain wall models [55].

As presented here, the model is rate-independent. While some applications may operate in
quasi-static regimes that minimize rate effects, as noted in [54], internal SMA temperatures can
change up to 10◦C during loading cycles, even at moderate strain-rates in relatively isothermal en-
vironments. In addition, while the current equilibrium stress-strain equations (32) can approximate
strain-temperature hysteresis, the shape memory effect, and latent heats of transformation [16], the
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full domain wall model cannot readily predict these phenomena particular to SMAs. To accom-
modate general ferroelastic and SMA behavior in more practical operating conditions, we intend to
investigate these issues. Finally, we note that issues related to material aging are significant for a
number of applications, but these are beyond the intent and scope of the model. To account for
aging in real-time, the model parameters can be re-identified or adaptively updated if substantial
discrepancies are detected.
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